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BS8 ITL. U K  

Received 18 May 1990 

Abstract. A refined hound for the correlation information of an N-trial apparatus is 
developed via an heuristic argument for  Hilbert spaces o f  arbitrary finite dimensionality. 
Conditional upon the proof of an easily motivated inequality we are then able to find the 
Optimal apparatus fo; large ensemble quantum inference, thereby solving the asymptotic 
optimal state determination problem. In this way we are able to identify an alternative 
inferential uncetfainty principle, which is then contrasted with the usual Heisenberg 
uncertainty principle. 

1. Introduction 

Quantum inference [ l ]  is a formalism that employs elements of communication theory 
[Z] to constrain information available about the quantum state of an ensemble contain- 
ing many identically prepared systems. For a detailed discussion of this idea see [3], 
its principal precursor is [4]. 

In [3] we constructed natural inferred distributions upon finite dimensional Hilbert 
space as the results of state determination gedanken experiments. These have confidence 
limits imposed by the geometry of Hilbert space and the number, N, of examinable 
ensemble members. 

The existence of such limits is easy to establish [3], drawing them precisely leads 
to a difficult optimization problem upon the geometry of Hilbert space. This is the 
optimal state determination problem [3] (hereafter OSDP). Here it is solved in the 
asymptotic regime of large N, conditional upon the proof of an easily motivated 
conjecture. 

2. Review of the OSDP 

The aim is to constrain knowledge of the ensemble state through establishing limits 
to confidence in the measurement of states. To do  so we focus attention upon an 
ensemble of identical pure states. For simplicity a restriction is made to finite 
dimensional Hilbert space, so the unknown state is labelled $ E  C d ,  with d the 
dimension. 
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This provides circumstances of maximal possible initial information. To obtain 
maximal information extraction, we consider the highly idealized possibility of making 
individual observations of each ensemble member with its own Hermitian operator. 
At this level the result of observation of the kth ensemble member is some single 
eigenvector, &, belonging to the kth measurement operator. These are recognized by 
their associated eigenvalues, which need not appear explicitly. 

In this way each choice of N Hermitian operators Ax defines a generalized ?-trial 
state determination apparatus, denoted dN. Only the eigenvectors of the Ak are 
important, so possibly many choices of N operators map to one dN.  Dropping all 
reference to the operators, d N  is simply defined to be a collection of N orthonormal 
bases for C d .  

Data from a single experiment with d N  is a set of N eigenvector outcomes, 
@ N = [ $ k } ~ = , .  There are d N  possible outcomes and these occur with conditional 
probability: 

N 

P(@NI$ ) -  n l ($l '$k)12. (1) 
k = l  

This represents a correlation between the reading Q N  of dN and the unknown state 
$. This correlation can be inverted via Bayes' rule to obtain ~ ( $ 1 " ~ ) .  

A representation independent inversion is obtained by specifying a unitary invariant 
prior distribution on state space [3]. This we call the quantum invariant prior and it 
is realized as the normalized ray measure 

d&= ( d  - 1)!S(  1 -&$) d& d$ (2) 

where d&d$=I$,dx,dy,/.rr and &$=($I$). 
Then quantum inference is the simple set of rules 

P ( @ N ) = ~  P ( @ N I @ )  dfir. (4) 

Details of the calculation of p ( Q N )  have been given in [3]. 

the performance of any dN to be quantified as 
The introduction of concepts drawn from communication theory [2,5] then enables 

($,@N}[dNI= P ( @ N )  P ( $ I @ N ) l O g P ( $ L / @ N )  dAi.  (5 )  
o w  

This is called the correlation information of the apparatus [3]. It measures the average 
information in nats that the outcomes 'DN of d N  yield about the unknown state $. 

In [ 3 ]  it was shown that 

( 6 )  

with d the Hilbert space dimension. This bound establishes the existence of the OSDP, 

where this is defined as the extremization of {$, with respect to the choice of d ~ .  
One such problem exists for each pair ( N ,  d ) .  

This paper will concentrate upon refining ( 6 )  through examination of the formula 
( 5 ) .  The new bound holds everywhere and allows a particularly nice solution to the 

) 
d 

{ $ . @ N } [ ~ N ] ~ N ( I O ~ ~ -  h = >  1 I /k  
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OSDP in the asymptotic regime of large N. The new bound we interpret as a new kind 
of inferential uncertainty principle. 

3. Formula for certain ray space integrals 

To speed calculation we first develop further a tool given in [3]. There it was shown 
that ior integrabie seed junctions j of a singie reai variabie, there is the simpie ray 
space integration formula 

where [ f ] " ( A )  indicates the mth iterated antiderivative off  evaluated at the point A. 
The linear bracket notation is defined inductively by: 

[f 1 = j " f  (w) dw 

with [ f ]"" = [[ f ] " ]  and d/du[f]" = [ f ] " - ' .  Apart from some notational differences, 
this is ewentially Jeffreys' device of treating integration as a linear operator, the Q of 
his work [ 6 ] .  

Some useful iterated antiderivatives follow: 

m !  k = I  k 

[ u ' l o g  U]"'=- 
*=I  I+k 

These are readily proved by induction on m using 

and 
U ) + '  

[ U ' ]  =T;i 

where 

[uf]"  = U [ / ] "  -m[fl"+' 

provides a short cut to generating such formulae. It can be proved by induction starting 
with the rule for integration by parts, [ u f ]  = u [ f l - [ f l ' .  

All integrations to be done here shall involve reduction to one of the above cases 
followed by application of (7) to read off the result. For example it is shown in appendix 
1 that: 
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where: 

1 

d - 1  and c, =- (1 -l(4l$)IZ) (13) g, (u) - ( l -u) f (u)  

gll(u)= u f ( u )  and Cll = l('$l$)12. (14) 

Armed with these formulae we can proceed to the calculation. 

4. Refined upper bound 

It follows directly from ( 5 )  that 

Furthermore, since all N-trial distributions assume the generic form 

it follows that (15) can be replaced by a supremum over the choice of N variable 
eigenvectors, 

{$,@N}[dNI<SUP P($I@N)lOgP($I@N)dAa. (16) 

Consider varying the '$k so as to maximize the right-hand side. Intuition suggests the 
result '$k = 4 for all k, since this generates the most peaked p($IQN) and it is this 
property that the information measures. 

I+ , )  I 
So it is conjectured that the inferred distribution of maximal information is: 

(17) 

where the choice of '$ does not matter. We have, as yet, no proof of this claim and 
proceed upon the basis that there is little doubt of its validity. 

1 
p($I@N)=> ( 1 ( $ l ' $ ) 1 2 ) N  

To calculate K use (7) and (8) w i t h f ( u ) = u N  to obtain: 

( d -  l ) ! N !  
( N + d - l ) ! '  

K =  

Then substitution of (17) into (16) yields: 

which readily reduces to 

where n o w f ( u ) =  u N  log U. Applying (7) with ( lo) ,  
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Substitution of this and ( 1 8 )  into (20) then yields the final result: 

which provides the sought after bound. It constrains apparatus performance for all N 
and d. 

5. Bounded asymptotics 

The bound (22)  is exact, for later use we now derive its large N behaviour. This 
provides a constraint upon the asymptotic form of the correlation information for any 
apparatus. First observe that 

( d + N - l ) !  N d - '  d - '  

( d - I ) !  N !  ( d - l ) ! k = j  

N 

(23) 

(24) 
1 d - 1  1 d - l  

* = I  N i k  * = I  I + k / N '  
~- - 2 -  

Then it is clear that for large N :  

l o g ( ( N + d - l ) ! ]  +log [ - Nd- '  ] ( 2 5 )  ( d  - l ) !  N !  ( d - l ) !  
d - l  1 

- N  1 ~ -, - (d  - 1 ) .  (26) N + k 

In both cases the approach is from above. Adding both terms as in (22) then gives 

where the terms that were discarded vanish in the limit N + m, and so merely mediate 
passage to this asymptotic form for the bound. However, because the approach is from 
above, this bound is properly one upon the possible asymptotics of the correlation 
information, not the correlation information itself. 

Note that the leading log N d - '  behaviour is generic for Gaussian location upon a 
2 ( d - 1 )  dimensional space. This is precisely the dimensionality of the pure state 
manifold of a d-state system, so the result is not unexpected. 

6. The isotropic apparatus 

To solve the OSDP in the asymptotic regime it is sufficient to exhibit an apparatus 
whose asymptotics achieve equality in (27). This will be the optimal apparatus for 
large N quantum inference. 

To characterize that apparatus which achieves the upper bound consider repeated 
use of m bases n times with N = n m .  Both n and m are to be taken large. With m 
large, we can consider the full set of measurement bases to be spread isotropically in 
Hilbert space, to yield a uniform density of possible eigenvector results. The limiting 
case as N -t m we call the isotropic apparatus. 
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It is shown in appendix 2 that, with the above limiting procedure implicit, the 
effective correlation of this idealized apparatus is given by the expression: 

(28) 1 1 
p(+l$) '7 exp[ Nd I 1(dw) I2  W$lw)12 dfiG . 

Here + is a new outcome parameter being the maximum of p ( Q N I $ )  for those outcomes 
Q N  which dominate in the sense of large probability of occurrence. 

Implicit in the introduction of + is a map "-6. However, it is not necessary to 
study this because the inbuilt symmetry of the isotropic apparatus ensures that the 
maxima q5 of all dominant inferred distributions will be uniformly distributed. 

It follows that for the correlation information the isotropic apparatus we should 
take: 

{$, +H.sPopI- 11 ~($14)  logp($l+) dfi; dfi6 (29) 

To calculate this quantity first consider the exponent in (28), namely 

E -  Nd I(+lw)l' logl(+lw)12 dfiG. (30) I 
Notice that this can be handled by the decomposition formula (12) with 

g , ( u ) = ( l - u ) l o g u  ( 3 1 )  

gll(u) = U log U. (32)  
Calculating the two component integrals of (12) with (7) using the results (9) and (IO), 
we find, after some manipulation that, 

Returning now to (28), notice that the constant term can be absorbed into the normaliz- 
ation and so 

where 

where use has been made of (7) with f ( u )  = eN" and the result (11). 
Note that the symmetric appearance of 6 and $ in (33 )  ensures that: 

P($I+) =P(+l+). 
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Looking at (33) it becomes obvious that perfect knowledge of the state J, obtains as 
N + CO. Also, it is now straightforward to verify that 

1 N d  
K N d N  

=log-+- - ( N ) .  

Using (34) we find 

( d - 1 )  N d  
K d N  N ( N ) = - ( d  - 1)+ N-- -- 

but again from (34), 

(35) 

Combining (36) and (37) and discarding terms that go to zero as N + m yields the 
following asymptotic result for the expression (35): 

corresponding to equality in (27). So this establishes the isotropic measurement scheme 
as the optimal apparatus in the large N limit, as claimed. 

Note that the uniqueness, or  otherwise, of this solution is not of interest to us. We 
simply wish to demonstrate that the fundamental limit can be realized asymptotically 
by some scheme. However, we do  further conjecture, upon the basis of detailed 
calculations performed in the case d = 2 [l], that the isotropic scheme is uniquely the 
best and that its performance can be approached arbitrarily closely by finite m measure- 
ment schemes for large n. 

I. Inferential uncertainty principle 

Aside from solving the asymptotic OSDP, for its own sake, what we have shown is that 
under the best possible conditions for quantum observations, the intrinsic quantum 
noise embodied in the rule: 

P(dJlJ, )  = l(&JlJ,)I2 (39) 
limits confidence in the quantum state by the measure given in (22). Furthermore, it 
is under similarly idealized conditions possible to realize these constraints arbitrarily 
closely for large ensembles. 

This represents an alternative, inferential uncertainty principle (IUP), since it limits 
the degree to which we can in principle know the initial conditions of a quantum 
ensemble containing N identical d state elements (where it is understood that once 
such information has been obtained the original ensemble has been irrevocably dis- 
turbed). 

Note that the usual Heisenberg uncertainty principle ( H U P )  says absolutely nothing 
about the degree to which we may know a state. The simple way to see this is to realize 
that any perfectly known state satisfies this rule. It is really a constraint upon the 
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degree to which it makes sense to speak of observables as having simultaneous values 
through study of constraints upon their operator dispersions. The reality of these 
constraints is well known from experiment. 

In no sense does the I U P  challenge the HUP, the two simply say different things. 
They are complementary and it is interesting to note that the derivation of both is 
rooted in the geometry of Hilbert space, through properties of the Hilbert space inner 
product. That of the [up follows from the functional form of (39) when used as a 
building block for generating inferred distributions; while that of the H U P  follows 
directly from the Schwartz inequality. 

A future paper will deal with the relation between the usual quantum mechanical 
entropy and the quantum correlation information. 

Acknowledgments 

The bulk of this work formed part of a PhD thesis, submitted to the University of 
Bristol in December 1989. I thank John Hannay at Bristol for initiating my work in 
this area and for many useful discussions during its development. Some additional 
work and the writing of this paper was done at the University of Melbourne. I thank 
the people there, especially Professor McKellar, for that opportunity. 

Appendix 1. Decomposition formula 

In this appendix we prove the decomposition formula (12). To begin we shall need 
the simple result that for I,, I,, I, indices to some orthonormal basis { l I ) } f= l :  

(40) 

unless I, = I , .  

becomes 
To show this, write Iw )  in polar coordinates as ( r im)=  uI e'*#. Then the ray measure 

and the integrand is 

(1, I U)( w I 1,)f ( 1  (I,( w )I '1 = e '( "fl-*i2)uI, w2f ( qJ. 

Consider the 8, integrations done first and observe that 

from which the desired result follows irrespective of the nature o f f ( u ) ,  
Consider now the integral: 

I = I l (dw)12f ( l (@l~)12)  d h G .  
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Insert an expansion basis chosen so that one element is equal to 1s). Let this be Id). Then 

I = L I ~ ~ 1 ~ ‘ ~ ~ ~ ‘ 1 ~ ~ ~ 4 1 ~ ~ ~ ~ 1 4 ~ ~ ~ 1 ~ $ 1 ~ ~ 1 2 ~  d& 
,I. 

and application of (40) with ld)=l$) yields: 

I = *i’ I l ( ~ l+ ) l 2 l (~ l~ ) I2 f  (I($Io)l2) d& 
I = ,  

The integral in the second term is already in the class to which (7) applies. Those in 
the first term can be made so, since with I$) = Id), we have (/I$) = 0 for I<  d. Then 
the symmetry of the integration measure ensures that: 

, 

Then use of the 14) normalization, 

converts (42) to the result (12) with g,, gll and C,,  Cir as in (13, 14). 

Appendix 2. Isotropic apparatus correlation 

In this section we show why (28) is a good approximation to the large N behaviour 
of the idealized isotropic measurement scheme. 

Label element j of basis k by 4;. Let P: be the proportion of the n trials on basis 
k in which this result occurs, where X.;’=, P i  = 1. Then p(mNIQ)  can be made explicit, 
for arbitrary repeated measurement sets, as  the exact expression: 

Observe that this is the product of m multinomial distributions in d variables, one for 
each basis. A standard result yields for the expectation value of P:: 

( P i ) =  l(4il$)12 
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where $ is the true state. We are interested in finite but large n behaviour so we must 
include some values of Pk that are off this shell. To do  so we introduce the condition 
that: 

for some 4, which is now considered as a generator of the allowed sets of P i  values, 
Invoking the uniformity of +i for the isotropic set allows us to conclude that the 
weight of + should be chosen uniform so as to obtain the correct corresponding weight 
for the P i .  

Substituting (44) into (43) and dropping the, now uniform, combinatorial prefactor, 
leads to the approximate expression: 

Invoking again the uniformity of 4i and taking m large then allows us to write 

from which (28) is found upon substitution of this into (45). Note that the validity of 
the above replacement improves with increasing N as does the ability to realize the 
condition that the +i should be uniform. This establishes (28) as a legitimate asymptotic 
correlation. 
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